Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Virusdisease ; 33(1): 23-31, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1827256

ABSTRACT

The transmembrane receptor Neuropilin-1 (NRP-1) was reported to serve as a host cell entry factor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19 disease. Therefore, molecular compounds interfering with SARS-CoV-2 binding to NRP-1 seem to be potential candidates as new antiviral drugs. In this study, NRP-1 receptor was targeted using a library of 1167 compounds previously analyzed in COVID-19 related studies. The results show the effectiveness of Nafamostat, Y96, Selinexor, Ebastine and UGS, in binding to NRP-1 receptor, with docking scores lower than - 8.2 kcal/mol. These molecules interact with NRP-1 receptor key residues, which makes them promising drugs to pursue further biological assays to explore their potential use in the treatment of COVID-19. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-021-00751-x.

2.
Virusdisease ; : 1-9, 2022.
Article in English | EuropePMC | ID: covidwho-1647531

ABSTRACT

The transmembrane receptor Neuropilin-1 (NRP-1) was reported to serve as a host cell entry factor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19 disease. Therefore, molecular compounds interfering with SARS-CoV-2 binding to NRP-1 seem to be potential candidates as new antiviral drugs. In this study, NRP-1 receptor was targeted using a library of 1167 compounds previously analyzed in COVID-19 related studies. The results show the effectiveness of Nafamostat, Y96, Selinexor, Ebastine and UGS, in binding to NRP-1 receptor, with docking scores lower than − 8.2 kcal/mol. These molecules interact with NRP-1 receptor key residues, which makes them promising drugs to pursue further biological assays to explore their potential use in the treatment of COVID-19. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00751-x.

3.
J Biomol Struct Dyn ; 40(1): 361-374, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-740100

ABSTRACT

The SARS-cov-2 RNA dependent RNA polymerase (nsp12) is a crucial viral enzyme that catalyzes the replication of RNA from RNA templates. The fixation of some ligands in the active site may alter the viral life cycle. The aim of the present study is to identify the conservation level of nsp12 motifs (A-G), using consurf server, and discover their interactions with rifabutin, rifampicin, rifapentin, sorangicin A, streptolydigin, myxopyronin B, VXR and VRX using AutoDockTools-1.5.6, Gromacs 2018.2 and g-mmpbsa. Thus, the most of amino acids residues located in nsp12 protein Motifs (A-G) were predicted as highly conserved. The binding energies of streptolydigin, VXR, rifabutin, rifapentine, VRX, sorangicin A, myxopyronin B and rifampicin with nsp12 protein are -8.11, -8.23, -7.14, -6.94, -6.55, -5.46, -5.33 and -5.26 kcal/mol, respectively. In the other hand, the binding energies of ligand in the same order with nsp7-nsp8-nsp12 complex are -7.23, -7.08, -7.21, -7, -6.59, -8.73, -5.52, -5.87 kcal/mol, respectively. All ligands interact with at least two nsp12 motifs. The molecular dynamics simulation of nsp12-streptolydigin and nsp12-VXR complexes shows that these two complexes are stable and the number of hydrogen bonds as a function of time, after 30 ns of simulation, varies between 0 and 6 for nsp12-streptolydigin complex and between 0 and 4 for nsp12-VXR complex. The average of free binding energies obtained using g_mmpbsa, after 30 ns of simulation, is -191.982 Kj/mol for nsp12-streptolydigin complex and -153.583 Kj/mol for nsp12-VXR complex. Our results suggest that these ligands may be used as inhibitors of SARS-cov-2 nsp12 protein.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Adipates , Humans , Molecular Docking Simulation , RNA, Viral , SARS-CoV-2 , Succinates
SELECTION OF CITATIONS
SEARCH DETAIL